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Abstract. The physical phenomena occuring in a diamond-type crystal are usually described
in terms of the invariants of some representations of the space group Of. By choosing a
new description, we obtain equivalent representations in which the expressions of the usual
-invariants are simpler.

The mathematical facilities obtained by using these representations offer new possibilit-
ies fot elaborating improved variants of the usual theories or extensions from perfect crystals
to crystals with impurities or defects.

1. Intreduction

The diamond-type crystals are among the most widely discussed crystals in literature,
and the usual theories supply results in good agreement with the experiment [1-24].
These theories are formulated in terms of the invariants of some representations of the
space group Of [25-28], but generally the mathematical expressions of these invariants
are not simple. We think that the crystals having diamond or zincblende structure are
important enough to justify the utilization (beside the classical description) of a specific
description in which the mathematical objects (equations, operators, etc) with physical
significance have a simple obviously O;-invariant form. To cbiain this description we
use a four-axes description very similar to the well known four-axes descriptlon one
uses in the case of the hexagonal lattice [29].

To illustrale the mathematical facilities offered by the representations of O} obtained
by using this description, we consider some classes of invariants which generalize certain
invarianis used in the actual theories.

We think that such mathematical objects allow us to obtain improved varianis for
the existing theories, new extensions of these theories from perfect crystals to crystals
with impurities or defects, new theories; etc.

2. Some representations of the space group Oy

Let Z be the ring of integers, and Jet N be the set of all natural numbers. The metric
space (D,,, &), where

[D'm = {n= (ng, Ry, Ha, H3)EZ4I o+ +Hy+isE {0, 1 }} (})
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and

3
§: Dy X D p—N, 8(n,ny=3 |n,—nj| (2)

J=0

is a mathematical modei for the ‘infinite’ crystal having the structure of diamond (n'e D,
is a neighbour of order & of neD,, if &(n, n)=k) [30-32].

The group of all isometries of the space (D,,, 8), that is, the group of all trans-
formations g: D, —D,, such that

5(g(n), g(n'))=6(n, n) (3)

for all n, n'eD L, is isomorphic to the space group O [30]. This group, denoted also
by Of, (it can be regarded as a faithful representation of Oy as a group of permutations
of the set D,.), is the group generated by the transformations

A Ay i D—Dy
A(”D: m, Az, n3}= (“n0+ 1, —N;, "Ha, —n3) (4)

Aglng, ny, nz,n3) = (Maw)s Roys Pa)s Ha(3y)

where
Z={0:{0, 1, 2,3} {0, 1,2, 3} | o is bijective}
that is,
On={g1og20. .. ogljeN\{0}. 21, g2, . . ., g€ {A} U {As|oeZd}}. (5)

We will use the relation (5) as a definition for the space group O.
Let NeN, N >3, be a fixed natural number, and let Z, be the quotient space Z/(NZ)
whose elements are the cosets [33]

0={0+kN|keZ}
1={1+kN|keZ},... (6)
N=1={(N-1)+kN}|keZ}.
As usual, we denote
—k=N—k

for any ke{0,1,..., N-1}.
We will obtain a mathematical model for the “finite’ crystal having the structure of
diamond by using the set

D={n=(ny, m, n2, n3)&(Zn)*| o+ +ny+n;e{0; 1}} (7

having N'= =2N? elements, instead of D.,. The utilization of Zy instead of Z is similar
to the usual method based on the periodicity conditions.
For each neD, we consider the elements

W =(ne+2(n), ny, 2, ny) n'=(ng, m+ £(n), nz, n3)

(8)

“=(ng, nr, 2+ g(n), n3) 1= (no, my, na, ns+ £(n))
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where
if g+ iy 1yt iy =
a(n)={ 1 1 Ao+ Tyt =0 ©)
-1 1fn0+n.+n2+n3=1
io be the first neighbours of #, the elements
nr= (nJ )fc
where j, ke {0, 1, 2, 3}, j#k, to be the second neighbours of #, the elements
= ((ny!
where j, k, 1€ {0, 1, 2, 3}, js2k#/, to be the third neighbours of », etc.
By using the formulae
AAD-D
Ang, ny, ma, m)=(—no+1, =1y, —my, —n3) (10)

Aglng, my, 2, n3)= (ﬂa(o) 2 a1y g2y s f‘lcm)

we obtain a representation of Qf as group of permutations of the set D. The image of

this representation will be also denoted by O{, that is,

Ol={giegse...0g,:D-D|jeN\[0},g1,...,g6{A} U {A,| et} - (1D
The bijection ‘

9:D—o(D) =(Zy)®

@y, 1y, i, ms)={(—no— 1t o+ ns, —Ro+ 1 —ny+n3, =g+ +ny— )

(12)

establishes the correspondence between this description and a variant of the usual one
[30, 31]. The usual description of Of in @(D) can be obtained by associating the
transformation

pogog  1p(D)— (D) (13)

to each element ge Oy, g: I —D. The mathematical expression of the representation of
O/ in D is simpler than the expression of the corresponding representation in (D).
The space (#, {.,.», where

# ={y:D->C| y is a function}
wi, w2 =3, wiln) ya(n)

#eld

(14)

is a Hilbert space isomorphic to the usual Hilbert space C"". The formula

(T (my=w(g™'(m) (13

where neD, ge Oy, defines a unitary representation of Oy in .
The relations

A(XO, Xl ~X29 X3)=("X0* "Xl ] H—XZ:I _X3)
Ae(Xo, X1, X2, X3) = (Xot0y, KXoty Xozys Xom)
define a linear representation of the group Oy in the vector space

L={(X0, X\, X2, X3)| Xo+ X+ X2+ X;=0}

(16)
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and the formula
(R XXt my=g(X(t, g~ (n))) (17)

defines a linear representation of O} in the space of functions

X is a function differentiable}

= {X RxD-L .
with respect to ¢

A mathematical object defined on a representation of O{ is Of-invariant if and only if
it is invariant under the transformations corresponding to A and A, for any oeZX;.

3. An application to lattice dynamics of diamond-type crystals

Let 4 be the equilibrium position of an atom of a crystal having the structure of
diamond, and Iet Ay, A1, A2, A3 be the equilibrium positions of the first neighbours of
A. Since the point A is the centre of the regular tetrahedron Agd,A434;, it follows that
the unitary vectors e, e, ez, €3 corresponding to the oriented segments 44y, 44,
AA,, A4 verify the relation

8()+E;+89_+83=0. (18)

To describe the position P at time ¢ of the atom of the crystal whose equilibrium
position is £, we use the element

(eo PP, ey PP’ ey PP' ey PP')el

that is, the orthogonal projections of the vector PP’ on the four axes corresponding to
the vectors ey, e, €3. €3.

To describe the time evolution of the atoms of the crystal with respect to their
equilibrium positions, we use a function Xev".

Let ®F, @7 be real constants such that

Ph=07F 0 O =0gHH (19)
forallj, [, p, qe{0, 1, 2, 3}, p#q, o€X,, and let me(0, co). The system of equations

2 3 3
m X6 m)= T T ORI )= Xi(t, )]

p=0/=0
3
+ Y ¥ ORXAL 0" =X (¢ m)] (20)
petg =0
where je{0, 1, 2, 3}, neD, and
X:Rx D_bu-s X(Ia H) =(X0(f, n)! Xl(t: f?).. XZ(L n‘)s X3(!9 H))

is an Of-invariant system of equations. Indeed, it is invariant under the transformation
A, and since

AX)(t, A () = Kop(t, Ao 1(n)) (21)
Agr(n)=(Aq 1(n))"? (22)

for all oceXy, neD, je{0,1, 2, 3}, it follows that the system (20) is invariant under the
transformations A,.
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Looking for solutions of the form

A; expl: (Z Kmi— cotﬂ if e(m)=1

=0

X,(t, m)= 1 23)
By exp|: (Z Kn,— ):I if g(m)=—1
where .
Kel={K=(Ko, K\, Kz, K3)eL| K;e {2rl/N|le{0,1,2,... ,N—1}}} 24)
and (4;), (B, )e[l. the system (18) becomes
3

mw’ 4= — Z Z Gh B exp(iK)—A1— T T O Afexp(i(K,—K))—1]

g 2 p#quo (25)
me’B=—Y Z DA, exp(—iK,)~B]— ¥ Z QY Blexp(i(K,— K,))— 1]

p=01= p#Eg =0

where je{0, 1, 2, 3}.
Since only six of these equations are independent and L1, 4;=0, L1, B;=0, the
system (25) is equivalent to the system

33
med;==73 Y (Oh— OB exp(iK,) — 4]

p=0f=1

-2 Z (5 — D) Afexp(i(K, — K} —1] (26)

pFEgi=i

3 2 ’
ma’B=—73 Y (Dh— 0|4, exp(—iK,)~ B]

p=0i=1

-2, Z (@7 — O Bilexp((K, - K,))—1]
petgl=l
where je{l, 2, 3].
The system of equations (20) corresponds to the system of equations used in lattice
dynamics of diamond-type crystals (the model of Born-von Karman type) [1, 24, 34].
Particularly, for @7, ®/ determined by using (19) and

(24391 0 0 0
[q) 0. ,mgﬂ_ 0 15717 4337 4337 o
Dz . . B3 0 4337 157.17 4337
0 4337 4337 157.17
[ 228 728 728 —148.
.. 0% 1528 0 0 7.28
ok o) a9
-308 1528 1528  22.8

the system of equations (20) corresponds to the system of equations used in the article
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of Patel er al. [24] for the description of the lattice dynamics of the diamond crystal
(the constants are in units of Nm™’,
By using (26) and the bijection

RY—L

k={x,p,z)—=K (29)
=((—x—y—z),(—xty+z), (x—yp+z), (x+y—2))

we can re-obtain the dispersion curves for diamond in good agreement with experiment
(see the figure presented in Patel’s article).

In the wsual description, the symmetry conditions (19) for the interaction constants
and the system of equations (20) have complicated mathematical expressions, even in
the case when we consider only interaction with first neighbours (one can see this case
presented in detail in [34]).

We can extend our formalism to include interactions with the third, fourth, etc,
neighbours without important complications.

4. An application to quasi-bound electren theory

Let a, feR be two real constants. The operator

V. A (V)W =ay(+8 S yr') (30)

J=0

is a self-adjoint Of-invariant operator. Indeed,

Yy, wep= 3, l:a vi(n)+ B .'Zo wi(n )] wa(n)

=Y ayi(n) v+ BT T i) waln)

neD J=0 nel?
- 3 —_
=Y ay(n) y(m)+ B Zo ZD yila) waln') =y, V) (31)
neD =0 ne
and since
ATy = (AT () AZ ()= (A () (32)
we get
TeoV=VoT, (33)

for any geOy.

In the case of an electron lying inside a diamond-type crystal and considered in the
tight-binding approximation [35], one assume that the only possible positions of the
electron are in the proximity of an atom of the crystal,

Denoting by |#) the wavefunction corresponding to the electron lying in the proxim-
ity of atom n, the general wavefunction is a superposition

2 yn)n> (34)

neld

where ye .
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For a=—4 and- #=], the operator ¥ considered above is similar to the discrete
Laplacean one considers [36] on the space A(Z*) used in the case of the crystals having
the structure of a cubic lattice. In this sense, ithe operator V defined above is an operator

of Schriodinger type.
Looking for eigenfunctions of ¥ having the form

U/K:D—PC

@ exp (i 3 anj) if e(n)=1

e (35)
bexp (i ¥ K,-n,-) if e(m)y=—1

=0

yr(n) =

where K=(K,, K, Kz, K3)e ., a, beC are constants, the relation
Vwr=AxWx
is equivalent with the system of equations

aa+ Bb i exp(iK;)} =Axa
0 : 7 (36)

abh+ Ba ‘2', exp(—iK;)=Agb.

=0

[t follows that the solutions

3
Ax=axf; } exp(ik;) (37
=0
of the eciuation
— v K
, a—Ax ' PBEi-oexp(ik;) -0 (38)
BEj=o exp(—ikK;) a—Ax
are eigenvalues of ¥ for any Ke.%. Particularly, if Ke & satisfies the relation
3
Y sin K,=0 (39)
=0
then
3
Ax=o£pY cos K; (40)

1=0

are eigenvalues of V.
The result obtained is in concordance with the existence of the energy bands. To
include the interaction with the second neighbours, we can use the opetator

Vi A (V) (n)=ay(n)+ B ‘zﬂ w( )+ y Y pn®). (41)
f= Feel
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A more deiailed description, is obtained by choosing the Hilbert space

W'={?:R-‘x Dc| T | 190, mldr<oo; W, n)=0ifuri|a-§} (42)
neld 3
i, YWay= 3 | YWilnn) Yalr,m) dr (43)
nel} g3

where d is the distance between the nearest atoms of the crystal, |(x, ), z)|=
(x+y* + 252 is the usual norm on R’, and by using a Hamiltonian of the form H =
H,+ ¥, where H, is the Hamiltonian of the isolated alom and

(VEYr,m)=a¥(r,n)+ B i ¥, nh) (44)
g

describes the interaction with the neighbouring atoms.
If Ke %, w,:R*~C is an eigenfunction of H,

Hoy.=E v, (45)

such that y,(r)=0 for ||r|>d/2, and yx:D—-C is an eigenfunction of ¥ corresponding
to the eigenvalue Ay, then

Y RxDoC W(r, n) =y, (¢) - weln) (46)

is an eigenfunction of A corresponding to the eigenvalue £= £, + 1. Hence the opera-
tor H has eigenvalues of the form

)32 exp(ik;)

Jj=0

E=E,q+a+f 47

that is, each level E, corresponds in the cryslta.l to a band of levels of width 8{f]
translated with e,

5, Conclusions

The considered representations of Of are more advantageous than the usual ones as
regards the possibility of defining mathematical objects with a simple O/-invariant form
and their physical significance.

Generally speaking, the ideas presented can immediately be extended to zincblende-
type crystals.

The correspondence between the proposed description and the usual one has a
simple form, and we can choose in each siluation the most convenient of them. These
descriptions used together may offer significant advantages.
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